IMF Program Review Meeting, Golden, CO June 23-25, 2003

Advanced Chlor-Alkali Technology

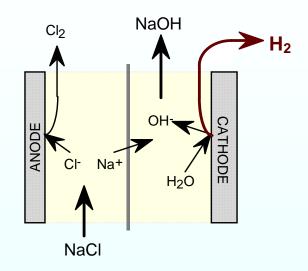
Jerzy Chlistunoff

Los Alamos National Laboratory

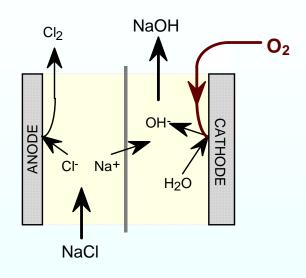
Project Plan

Goals

- Improve energy efficiency of the chlor-alkali process (by replacing hydrogen-evolving cathode with oxygen-consuming cathode)
- Lower the production cost
- Deliver products that would match or exceed current industrial purity standards


Objectives

- Identification of the best materials and structures
- Optimization of the operating conditions
- Bringing the oxygen cathode chlor-alkali process to the point where it will become attractive for the industry to invest in the process scale-up and, eventually, in the implementation of the technology


Reducing Energy Consumption in a Chlor-Alkali Reactor Using an Oxygen Cathode

a) Conventional Chlor-Alkali Cell

Typical $V_{cell} = 3.2 \text{ V}$ at 0.4 A cm⁻²

b) Chlor-Alkali Cell with Oxygen Cathode

Typical $V_{cell} = 2.3 \text{ V}$ at 0.4 A cm⁻²

CELL REACTIONS

Anode: $2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$; $\text{E}^\circ = 1.31 \text{V (pH=4)}$

Cathode: $2 H_2O + 2 e^- \rightarrow H_2 + 2 OH^-$ (conventional); $E^0 = -0.84V$ (pH=14)

 $O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^-$ (oxygen cathode); E° = 0.39V (pH=14)

Energy and the Chlor-Alkali Industry Basic Assumptions and Technical Data

Technology	% of US market	Energy Consumption kWh per 1 ton of Cl ₂ NaOH Concentrat %		Comments
Mercury	12	3360 Sery pure		Environmental concerns (Hg)
Diaphragm	70	2900	12	Inexpensive cells Asbestos
Membrane	18	2500	32 Pure	Expensive cells
Oxygen cathode	0	1750	32 Pure	Expensive cells

- Potential energy recovery from H₂: 550 kWh (PEM FC at 50% efficiency)
- Identical cost of compressing/storing O₂/air for oxygen depolarized chlor-alkali
 cell and PEM FC
- Identical cost of oxygen diffusion cathodes for chlor-alkali cell and PEM FC

Energy and the Chlor-Alkali Industry

Technology	Energy/Money Savings Upon Conversion To Oxygen Cathode Technology (per 1 ton of chlorine)			Capital Cost of Conversion to Other Technology (per 1 ton of chlorine) ^{a)}		
	kWh	%	\$	Oxygen Cathode ^{b)}	Membrane ^{c)}	Conventional + PEM FC d)
Mercury	1610	48	79	\$10-80	\$10-80	\$15-120
Mercury + PEM Fuel Cell Stack	1060	38	52			
Diaphragm	1150	40	56	\$10-80		\$15-120
Diaphragm + PEM Fuel Cell Stack	600	26	29			
Membrane	750	30	37	\$10-80		\$15-120
Membrane + PEM Fuel Cell Stack	200	8	10			

- a) Conversion costs per 1 ton of chlorine calculated from conversion costs per 1 ton of chlorine capacity and plant operating life of 10-40 years
- b) Estimated
- c) Modern Chlor-Alkali Technology

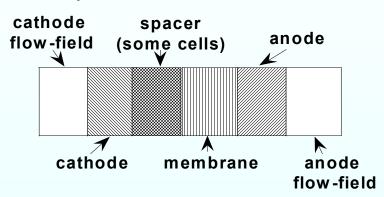
Summary of Recent Effort

- Cathode modifications aimed at:
 - reducing flooding susceptibility of peroxide-destroying structure
 - increasing caustic current efficiency
- Selecting materials for the cathode hardware:
 - determining effect of cathode hardware coating on peroxide byproduct generation
 - reducing hardware corrosion
- Anode modifications aimed at:
 - increasing caustic current efficiency (CCE)

Typical Experimental Conditions

•Zero-gap cell configuration: cell components in intimate contact (see scheme below)

Cathode: 50 cm² double-sided ELAT


•Catalyst: 20% Pt/C (0.5 mg/cm²)

Cathode flow-field: LANL metal patterned flow-field

•Carbon cloth spacer (Panex® 30) between the cathode and the membrane

•Anode: DSA® coated Ti meshes (size 120 and 60)

•Membrane: Asahi F4232

•Oxygen: pressure - 138 kPa (20 psig); flow - 5 times that required by stoichiometry;

humidification - 0.5 cm³/min

•Brine concentration: 200 g/dm³

•Temperature: 90°C

Panex[®] is a trademark of Zoltek Corporation and DSA[®] is a trademark of Eltech Systems Corporation

Processes in Alkaline Oxygen Electrode

Hydroxide Formation:

$$1/2 O_2 + H_2O + 2 e^- \rightarrow 2 OH^-$$

 $H_2O:O_2=2:1$

Peroxide Formation:

$$O_2 + H_2O + 2 e^- \rightarrow OOH^- + OH^-$$

 $H_2O:O_2=1:1$

Peroxide precipitation:

$$OOH^- + OH^- + 2 Na^+ \rightarrow Na_2O_2 + H_2O$$

Peroxide Decomposition:

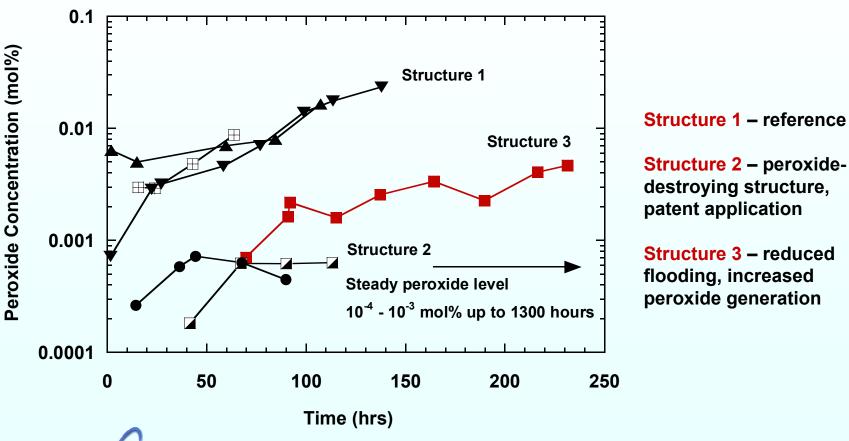
 $00H^{-} \rightarrow 1/2 \ O_{2} + OH^{-}$

$$O_2 + H_2O + 2 e^- \rightarrow OOH^- + OH^-$$

C

followed by:

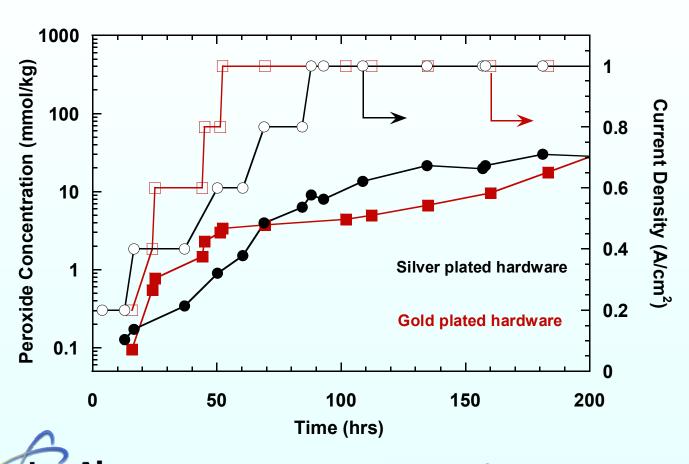
$$OOH^- + H_2O + 2 e^- \rightarrow 3 OH^-$$

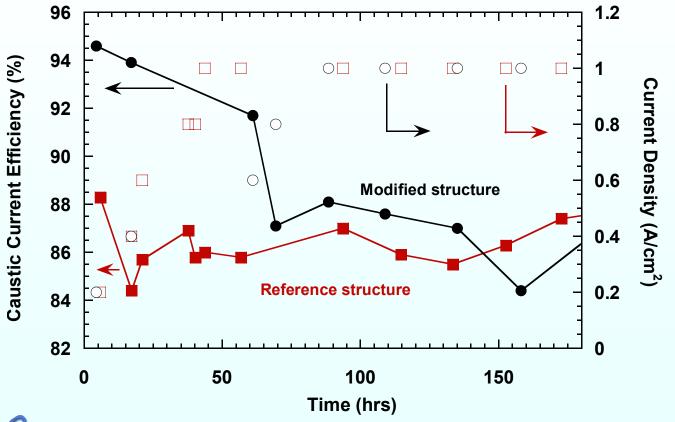

Pt

$$O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^-$$

Pt

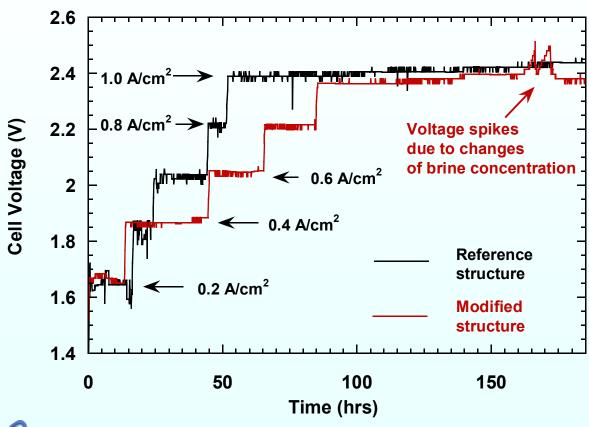
Reduction of Flooding Susceptibility of the Peroxide-Destroying Cathode Structure


Current densities were increased stepwise from 0.2 to 1.0 A/cm² during first 70-100 hrs


Effect of Cathode Hardware Coating On Peroxide Generation

Silver plated hardware is less effective as peroxide decomposition catalyst than gold plated hardware

Effect of Cathode Modification on Caustic Current Efficiency (CCE)


Higher CCE for modified structure at lower throughputs (j \leq 0.6 A/cm²) No effect at higher throughputs (j \geq 0.8 A/cm²)

Effect of Cathode Modification on the Cell Voltage

Small decrease of the cell voltage at highest current densities

Cathode Hardware Corrosion

- Gold plated stainless steel (316) hardware moderate corrosion under open circuit conditions, very slight corrosion under the cathode gasket during electrolysis
- Gold plated nickel hardware severe corrosion under open circuit conditions, nonnegligible corrosion under the cathode gasket during electrolysis
- Silver plated nickel hardware excellent corrosion resistance under open circuit conditions and during electrolysis

Anode Side Processes Leading to Lowering Caustic Current Efficiency (CCE)

Oxygen evolution

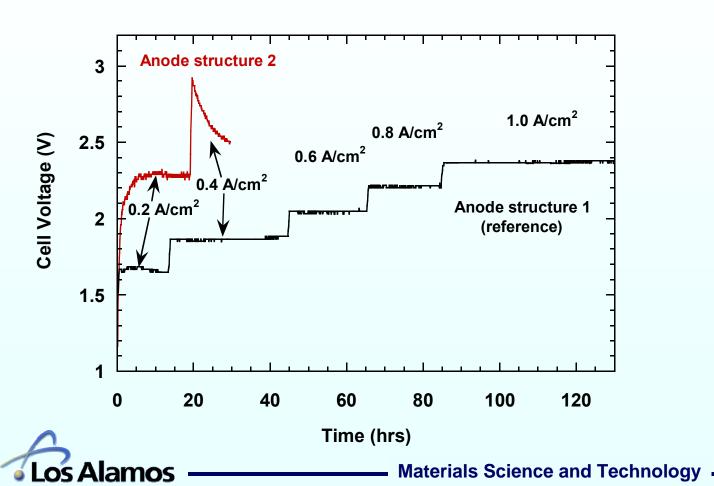
$$2 H_2O \rightarrow 4 H^+ + O_2 + 4 e^-$$

Excess of H⁺ is transported through the membrane to the cathode compartment, where it neutralizes OH⁻

Chlorine oxo-anion formation

$$Cl^- + n H_2O \rightarrow 2n H^+ + ClO_n^- + 2n e^- (not a mechanism)$$

Same effect as for O₂ evolution


Membrane blinding by chlorine gas

Local current densities higher than the membrane was designed for lead to increased membrane permeability and higher NaOH crossover

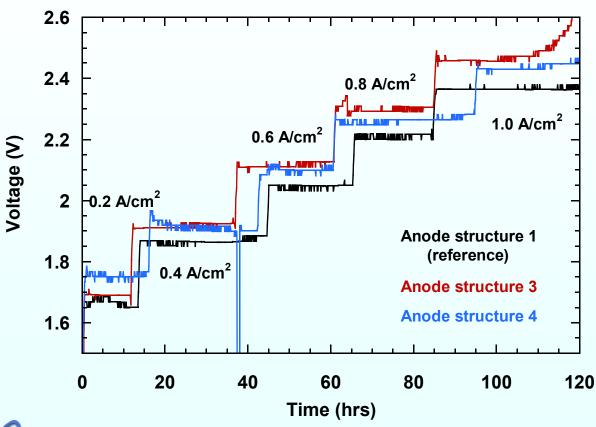


Anode Modifications Aimed at Improving CCE Material Compatibility Issue

Structure 2 failed as a result of incompatibility of the material used. High cell voltages accompanied by low caustic current efficiency

Improving Caustic Current Efficiency (CCE) Through Anode Modifications

Structure 1 – original, unmodified


Structure 3 – improves caustic current efficiency at j ≤ 0.6 A/cm², invention disclosure submitted

Structure 4 – improves caustic current efficiency at all current densities, invention disclosure submitted

Effect of Anode Modification on the Cell Voltage Structures Improving CCE

Structures 3 and 4 offer increase of CCE at a relatively small penalty in cell voltage Structure 4 exhibits better overall performance – lower cell voltage, high CCE at all current densities

Future Plans

- Membrane testing:
 select the best membrane in terms of overall performance,
 i.e., cell voltage, current efficiency, product purity (already started)
- Testing unsupported catalysts: Reduce catalyst loss
- Anode flow-field modifications:
 Design an inexpensive scalable anode flow-field

Reactors

Cell

Fuel

Chlor-Alkali

Anode: $4 \text{ Cl}^- \rightarrow 2 \text{ Cl}_2 + 4 \text{ e}^-$

Cathode: $O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^-$

Cell : $O_2 + 2 H_2O + 4 Cl^- \rightarrow 2 Cl_2 + 4 OH^-$

Chlorate, Perchlorate

Anode: $Cl^- + 3 H_2O \rightarrow ClO_3^- + 6 H^+ + 6 e^-$

or

Anode: $CI^- + 4 H_2O \rightarrow CIO_4^- + 8 H^+ + 8 e^-$

Hydrogen Peroxide

Cathode: $O_2 + H_2O + 2 e^- \rightarrow OH^- + HO_2^-$

HCI Destruction

Cathode: $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$

Hydrogen Peroxide

Anode: $H_2 \rightarrow 2 H^+ + 2 e^-$

Cathode: $O_2 + 2 H^+ + 2 e^- \rightarrow H_2 O_2$

Cell: $H_2 + O_2 \rightarrow H_2O_2$

Hydroxylamine

Anode: $3/2 \text{ H}_2 \rightarrow 3 \text{ H}^+ + 3 \text{ e}^-$

Cathode: NO + 3 H $^+$ + 3 e $^ \rightarrow$ NH $_2$ OH

Cell: NO + 3/2 H₂ → NH₂OH

Selective Hydrogenation of Unsaturated Compounds

Waste Treatment

Pilot Plant

Possible

R@D

Participants, Funding & Acknowledgements

Project Participants

Los Alamos National Laboratory PPG

Funding

DOE OIT IMF Program

Acknowledgements

DOE OIT IMF Program
Tom Baker (ESS Program Office)
Amanda Casteel
Wayne Smith
MST-11

